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Abstract

Fifty blue ball-point pen inks of five different brands were examined on the basis of the Vis spectrum of their ethanolic

solutions with a view to achieving good discrimination between them. Samples were dissolved in absolute ethanol and their

absorbance values in the range of 400–750 nm, after appropriate transformations, were used as variables in the multivariate

statistical techniques of cluster analysis (CA), principal component analysis (PCA) and discriminant analysis (DA). These

techniques were used successively so that an effective and meaningful discriminant model was calculated in the final step. The

initial 351 variables (log10 transformed ink absorption values at each wavelength) were subjected to a K-means CA over the

objects (samples) and only 20 variables were retained. Principal component analysis was used to detect any outliers (four

samples were removed) and the remaining samples were re-subjected to PCA to decide how many variables to enter into DA and

whether original variables or components should be used. It was found that the first three principal components (in accordance

with the Kaiser criterion) were good descriptors of the 20 original variables (96.97% of the data variance was explained) and

their use as latent variables in DA lead to low average variable redundancy (33.6%) in the discriminant model. The calculated

model had a Wilks’ l of 8:98 � 10�5 and was statistically significant at the P ¼ 0:05 level. The post hoc classification of the

training dataset was 100% correct. From the DA results and the component loadings it was found that discrimination was

achieved on the basis of differences in the shape of the absorption bands as well as their relative intensities. The method was

therefore deemed appropriate for supporting exclusionary forensic purposes.
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Blue ball-point pen ink

1. Introduction

Ink analysis is an important forensic procedure that can

reveal useful information about questioned documents. Most

of its applications regard the detection and confirmation of

alterations to documents with significant financial value such

as insurance claims, wills, contracts and tax returns. These

modifications can be confirmed by comparison of the inks

used to produce the questioned document or estimation of

the time at which the various sections of the document were

written [1]. It is therefore evident that there is a great need

for the development of instrumental methods that will allow

an in-depth examination of the inks used to produce a

document and at the same time rigid statistical protocols

are necessary to be followed so that conclusions regarding

ink similarity can be drawn on an objective basis at pre-

defined confidence levels.

The aforementioned needs rise from the fact that docu-

ments are rather complex systems that consist of primary and

secondary materials [2]. Primary materials comprise the

document support (e.g. paper, cardboard, polymer, etc.)

and the text (e.g. ink deposits, carbon copies, photocopier

toner, pencil, etc.). Secondary materials usually appear on a

document as a result of corrections and manipulations and

include correcting materials, erasure residues, adhesives,

stains, fingerprints, etc.
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Modern inks contain a plethora of substances that aim to

improve the ink characteristics [1,3]. Obviously, the most

important component is the coloring material. This comes in

the form of dyes, pigments or a combination of both. Dyes

can be acidic or basic and are soluble in the liquid body of

the ink that is also known as the vehicle. On the other hand,

pigments are finely ground multimolecular granules that are

insoluble in the vehicle. The vehicle, whose composition

affects the flowing and drying characteristics of the ink, can

consist of oils, solvents and resins. Another class of sub-

stances is used to finely tune the characteristics of the ink.

These substances include driers, plasticizers, waxes, greases,

soaps and detergents.

The techniques regarding the analysis of inks can be

divided into destructive and non-destructive ones with

regard to the changes they bring about to the questioned

document. In destructive methods, a portion of the ink has to

be removed from the document prior to the analysis [4]. On

the other hand, non-destructive methods involve the obser-

vation of ink on the document by means of a reflectance

technique that allows the recording of the ink spectral

characteristics without removing the sample from its sup-

port.

Chromatographic and electrophoretic methods have

always been favored by scientists as far as the analysis of

inks is concerned. This preference stems from the fact that

inks are rather complex mixtures that require separation of

their constituents if good discrimination is to be achieved.

Paper chromatography has been among the oldest destruc-

tive methods employed in ink analysis and has been used

especially for organic dye based inks [5–7] since the older

iron-gallotanate inks are difficult to separate by chromato-

graphy. Thin layer chromatography (TLC) [2,8–10] and its

variants, including disk chromatography [11] and high

performance thin layer chromatography (HPTLC) [12–

14], have gradually replaced paper chromatography and

have proved to be a satisfactory equivalent for separating

ink components. Observation of thin layer chromatograms

under alternative light sources, the use of infrared lumi-

nescence and microspectrophotometry have also been

employed in an attempt to achieve better characterization

of the TLC bands [15–17]. Although TLC remains the

preferred method for ink analysis due to its low cost and

relative simplicity, high performance liquid chromatography

(HPLC) has been used as an alternative destructive techni-

que that has the advantage of higher resolution and is also

capable of detecting colorless components in the ink matrix

[18–20]. Characterization of inks has also been achieved by

means of traditional electrophoretic methods, but with

increased equipment cost and a demand for larger samples

[21,22]. Better results in terms of resolution, quantitation

and analysis time have been achieved with the use of

capillary electrophoresis (CE) [1,23–25].

Non-destructive techniques, although being the most

useful ones with regard to document integrity, have not

been developed and exploited thoroughly. The observation

of documents under alternative light sources with the naked

eye is probably the most commonly used method [26].

Problems associated with the subjectivity of the human

eye have been surpassed with the use of suitable detectors

that can measure the reflected radiation from the samples at

different wavelengths, thus offering further information

regarding the nature and composition of the ink [2].

Although much research has been carried out for the

development of efficient analytical methods regarding the

composition of inks, chemometrics is an area that has not

been extensively used to explore and support the analytical

results. Multivariate chemometrics in particular is a power-

ful tool when dealing with multi-component systems and

allows the extraction of maximum information from com-

plicated datasets. Since forensic science is a discipline that

must draw its conclusions on a purely objective basis

whenever this is possible, it is mandatory for forensic

scientists to follow rigid statistical protocols in reaching

decisions regarding experimental data. Therefore, in our

present work, we have tried to explore the usefulness of

multivariate chemometrics in the discrimination of blue ball-

point pen inks. This was achieved by extracting ink dyes in

ethanol, recording the Vis spectra of the extracts and apply-

ing cluster analysis (CA), principal component analysis

(PCA) and discriminant analysis (DA) to the spectral data.

Although the use of multivariate chemometrics with UV-Vis

spectra is usually avoided, as these spectra show broad bands

that cause multicollinearity problems, we have followed a

statistical protocol presented in previously published work

[27] that allowed us to decide on the number and quality of

the variables (original ones or principal components) to be

used so that an effective discrimination of the inks could be

achieved. Readers who are not familiar with the statistical

techniques presented herein are referred to Appendix A at

the end of the paper where the fundamentals of cluster

analysis, principal component analysis and discriminant

analysis are given.

2. Materials and methods

2.1. Samples, their preparation and measurements

Five commercially available brands of blue ball-point pen

inks (coded as: BI, FC, PE, PI and ST) were used for the

study. For each brand, 10 pens of the same batch were

sampled once by means of a stainless steel needle that was

used to penetrate the wall of the plastic ink reservoir and

transfer a small portion of the sample (less than 1 mg) into

the solvent. Each pen was sampled using a different needle

and the ink stained tip of the needle was submerged in a test

tube containing 10.0 ml absolute ethanol (MERCK, 99.8%

v/v). After part of the ink had dissolved in the solvent, the

solution was agitated and centrifuged at 2000 rpm for

10 min and the absorbance of the supernatant liquid was

measured on a JENWAY 6405 UV-Vis spectrophotometer in
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a 1.00 cm quartz cell against absolute ethanol as the blank.

The scanning range was 400–750 nm at 1 nm intervals.

2.2. Statistical procedures

The absorbance values for each sample were divided by

the total absorbance resulting from each spectrum and the

results were multiplied by 100. The log10(%A) values were

calculated to ensure normality of the data. All statistical

analyses were performed on a personal computer running

STATISTICA Version 4.3 for Windows by StatSoft Inc.,

1993. The modules used were cluster analysis, factor ana-

lysis (FA) and discriminant analysis. Varimax rotation was

used in PCA.

3. Results and discussion

The use of %A values instead of raw absorbance data was

necessary since the resulting spectra would have to be

normalized per unit mass of sample if they were to be

comparable. However, ink samples of the size used in this

study were extremely small (less than 1 mg) and very

difficult to weigh and we therefore judged it necessary to

use the formula:

%Ak ¼
AkP750

i¼400Ai

� 100

This transformation overcomes the problem of differ-

ences in the weights of the samples used to prepare the

solutions and the spectra become comparable. The average

spectrum for each pen brand (as %�A versus l) is shown in

Fig. 1. Each spectrum represents the average absorption of

inks coming from the same batch. The wavelength range

chosen in the study was that of the visible region in an

attempt to imitate the response of the human eye to the

coloring constituents of inks. From the spectra, it can be seen

that the inks studied fell into two main categories: inks FC,

PE, ST demonstrated a single-peaked spectrum, whereas

inks BI and PI possessed double-peaked spectra. The first

absorption band had its peak in the range of 570–600 nm and

was common for all inks. Electromagnetic radiation of these

wavelengths appears yellow–orange to the naked eye and is

absorbed by blue–cyan substances. The band mentioned

above was therefore attributed to the blue dyes and pigments

contained in all samples. The second band, which was

present only in the case of samples BI and PI, had its peak

in the range of 660–670 nm. Radiation in this range is

orange-red in color and is absorbed by blue–green sub-

stances. Indeed, when observed with the naked eye, the

solutions of these inks had colors that differed slightly from

those of inks FC, ST and PE. Although these average spectra

allowed a rough discrimination of the samples, nothing

could be said about the differences observed in the spectra

of inks FC, ST and PE as these spectra represented only the

between sample variance with nothing being known about

the within sample variance. Therefore, advanced statistical

tests were judged necessary for the establishment of a

completely objective discriminating protocol.

As both PCA and DA are parametric statistical techni-

ques, it was necessary for the data (%A values) to be log10

transformed to ensure normality. Since samples for each

brand were considered to belong to different populations

and only 10 samples from each population were available,

no normality tests were carried out, as these tests are

known to work well for large sample sizes only. From

now on, the log10(%A) values will be referred to as the

original variables.
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Fig. 1. Average %A vs. l for all pen brands.
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STATISTICA Version 4.3 for Windows does not allow

more than 300 variables to be used in any of its analyses.

However, the ink spectra were recorded in the range of 400–

750 nm at 1 nm intervals and the log10 transformed %A

values at every wavelength were to be taken as the original

variables. This meant that 351 variables were available and

some of them would have to be removed for the dataset to

comply with the STATISTICA limitations. Feature reduction

of this kind can be achieved by performing a cluster analysis

(K-means) on the variables over the objects (ink samples)

[28]. According to this technique, variables carrying similar

information about the objects are expected to form clusters

from which the most representative variables (the ones

closest to the cluster centroids) can be chosen. Although

the maximum number of clusters that can be formed by

STATISTICA is 50, we were able to calculate only 20

clusters and use the relevant variables, since the formation

of 50, 40 or 30 clusters yielded variables that proved to be

highly correlated and all subsequent attempts to run a PCA

resulted in a singular correlation matrix.

In the first place, PCA was necessary for the removal of

any outliers in the data. The presence of outliers can affect

the results of DA through an overestimation of the within

sample variance, something that can reduce the effectiveness

of the discriminant model. Although the deletion of some

data may appear to introduce bias in the analysis, in this case,

such a procedure was necessary since for each brand all 10

pens were of the same batch and their spectra were expected

to come from the same population. In multivariate systems,

PCA can aid the observation of outliers by projection of the

data on a plane after Varimax rotation of the first two

extracted components (PC1 and PC2). This plane is shown

in Fig. 2 from which it can be seen that samples FC1, PI4,

PI7 and ST8 should be considered outliers and their exis-

tence was attributed to measurement problems. These out-

liers were removed from the dataset.

The next step in the study regarded the quality of the

discriminant model calculated in DA. Principal component

analysis was successively applied to the original dataset and

each time fewer and fewer components were extracted and

rotated. For each component, the variable with the highest

loading was retained and the resulting new subset of vari-

ables was used in DA. This method has the advantage of

easier interpretation of the DA results since reference to the

original wavelengths can be made directly, but multicolli-

nearity is still present and high variable redundancy is

observed in DA. The characteristics of the discriminant

model were also checked when components were used

instead of the original variables. When this method is

followed, the interpretation of the results is more difficult

as one has to look at the component loadings to decide which

variables they represent. However, the technique handles the

problem of multicollinearity effectively due to the orthogo-

nal nature of the extracted components.

To avoid capitalizing on chance, one has to use as few

variables as possible when running a DA. A useful rule of

thumb [28] dictates that m variables should be used when n

objects exist so that:

m <
n

3

Taking the removed outliers into account, 46 objects

remained and that meant that only up to 15 variables (or

components) should be entered into the DA module. The two

main criteria (Kaiser criterion [29] and the scree test [30])

used in deciding how many components to extract in PCA

were also taken into account when interpreting the DA

results. The scree plot (Fig. 3) for the given dataset showed
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Fig. 2. Principal component graph for the detection of outliers ((*) BI, (~) FC, (&) PE, (*) PI, (~) ST).
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that the first three components had eigenvalues greater than

unity (Kaiser criterion) while the first four or five compo-

nents satisfied the scree test.

Changes in Wilks’ l values versus the number of original

variables or components used are shown in Fig. 4. The use of

a logarithmic scale for the Wilks’ l axis (showing values

divided by 10�3) was mandatory since a wide range of

values had to be covered. As it was theoretically expected,

the discriminatory power of the model increased as more and

more variables (or components) were used. The change in

the slope observed at the point that corresponded to three

variables (or components) denoted that little improvement

was achieved by further increasing the number of variables

(or components). This point was in agreement with the

Kaiser criterion result. Slightly better (smaller) Wilks’ l
values were observed when components were used instead

of original variables. At the same time, the percent average

redundancy of the original variables in the discriminant
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model increased rapidly when more than four variables were

used and eventually reached a plateau at ca. 96%. It is also

worth mentioning that four variables is the predicted number

of variables by the scree test. When principal components

were used in the model, the same increase was observed at

the point that corresponded to four components, but the final

plateau did not exceed 63%. This was expected since

principal components are orthogonal and uncorrelated by

definition. The use of principal components as new latent

variables in DA was therefore preferable.

Examination of the number of statistically insignificant

(at P ¼ 0:05) variables or components in the discriminant

model (Fig. 5) showed that when five or less variables or

components were entered into the DA module, they were all

statistically significant at the P ¼ 0:05 level. Again the use

of principal components instead of original variables proved

to be more adequate. In every case, the percent correct post

hoc classification of the items in the training dataset was

100% except when only two variables or components were

used, something that resulted in percent correct classification

values of 91.3 and 84.8%, respectively.

Based on the findings mentioned above, we decided to use

the scores of the first three principal components in the DA

model. This allowed us to sacrifice as little discriminatory

power as possible and also avoid entering too many new

latent variables in the model. The three components used

accounted for 96.97% of the total variance in the original

data. The Wilks’ l of the calculated discriminant model was

8:98 � 10�5 and the model was found to be statistically

significant at the P ¼ 0:05 level with an average variable

redundancy of 33.6%. The post hoc classification of the

items in the training dataset was found to be 100% correct.

The three discriminant functions (canonical roots) calcu-

lated for the model were checked for their significance by

means of a w2-test and successive removal of the roots until

only one root remained. From the P-values in Table 1 it can

be seen that all three roots were statistically significant at the

P ¼ 0:05 level.

The discriminant functions that were calculated were of

the form:

L ¼ b0 þ
X3

i¼1

biPCi

The raw (bi) and standardized (Bi) coefficients of the

canonical roots are given in Table 2. Raw coefficients were
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Fig. 5. Number of statistically insignificant variables or components in discriminant analysis ((*) number of statistically insignificant original

variables, (*) number of statistically insignificant principal components).

Table 1

Significance of discriminant functions

Removed roots w2 d.f. P-value

0 382.0371 12 <0.001

First 194.9673 6 <0.001

First, second 27.37222 2 <0.001

Table 2

Raw and standardized coefficients of discriminant functions

Root 1 Root 2 Root 3

Raw coefficient

b0 7.06 � 10�15 5.70 � 10�15 �1.33 � 10�16

b1 �1.2365 0.2430 1.3203

b2 3.8685 �6.6783 0.1139

b3 �8.4158 �3.1056 �0.1416

Standardized coefficient

B1 �0.9193 0.1807 0.9816

B2 0.5633 �0.9724 0.0166

B3 �1.1575 �0.4271 �0.0195
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used for the calculation of the sample canonical scores and

the drawing of the respective graph (Fig. 6). Only the first

two roots are given since those were the ones that played the

most important role in the discrimination. Root 1 was

responsible for the separation ||PE||FC-ST-BI||PI||, whereas

root 2 further aided the separation ||FC-ST||BI||. Root 3,

which is not shown here, was responsible for the final

separation ||FC||ST||.

Standardized coefficients were used for the estimation of

the component contribution to the discrimination achieved

by the respective discriminant function. From Table 2 it can

be seen that PC3 played the most important role in the

discrimination achieved by root 1. From the statistically

significant (P < 0:05) component loadings (Table 3) it can

be seen that PC3 mainly represented absorbance at 622 nm.

At that wavelength, spectra belonging to the PI group

demonstrated an absorbance shoulder (Fig. 1) that was

absent in the other groups. The discriminatory power of

root 1 is especially evident in Fig. 6 in which the PI group

lies on the far right, completely separated from the other
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Fig. 6. Canonical score graph of the first two discriminant functions for the post hoc classification of the training dataset ((*) BI, (~) FC,

(&) PE, (*) PI, (~) ST).

Table 3

Statistically significant component loadings

PC1 PC2 PC3

Original

variable

Loading P-value Original

variable

Loading P-value Original

variable

Loading P-value

log10(%A418) 0.9614 <0.001 log10(%A677) 0.9980 <0.001 log10(%A495) 0.7999 <0.001

log10(%A405) 0.9551 <0.001 log10(%A660) 0.9858 <0.001 log10(%A511) 0.7374 <0.001

log10(%A443) 0.9513 <0.001 log10(%A686) 0.9748 <0.001 log10(%A482) 0.7106 <0.001

log10(%A444) 0.9483 <0.001 log10(%A696) 0.7583 <0.001 log10(%A524) 0.6330 <0.001

log10(%A707) 0.9296 <0.001 log10(%A643) 0.6645 <0.001 log10(%A537) 0.4773 0.001

log10(%A728) 0.9092 <0.001 log10(%A495) �0.3392 0.021 log10(%A464) 0.4599 0.001

log10(%A464) 0.8742 <0.001 log10(%A511) �0.5995 <0.001 log10(%A643) �0.7040 <0.001

log10(%A482) 0.6910 <0.001 log10(%A524) �0.7661 <0.001 log10(%A622) �0.9469 <0.001

log10(%A696) 0.5609 <0.001 log10(%A537) �0.8754 <0.001

log10(%A495) 0.4881 0.001 log10(%A570) �0.9760 <0.001

log10(%A511) 0.3059 0.039 log10(%A553) �0.9803 <0.001

Table 4

Contribution to discrimination and redundancy of components

Component Partial

Wilks’ l
P-value Tolerance Redundancy

(%)

PC1 0.2735 <0.001 0.5431 45.7

PC2 0.0153 <0.001 0.7917 20.8

PC3 0.0113 <0.001 0.6568 34.3
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groups. Table 2 also shows that root 2 was mainly affected by

PC2. From Table 3 it can be seen that this component

represented absorbance in the range of 660–686 nm and

at 553 and 570 nm. Fig. 1 shows that the first range corre-

sponded to the second peak that characterized BI and PI inks

with %A values being significantly higher in the case of BI

inks. Absorption at 553 and 570 nm was also different for BI

inks and corresponded to the ascending part of the band with

a slope that was smaller than the slopes of the other curves at

those wavelength points. These features were responsible for

the separation of the BI group by means of root 2, something

that is also evident in Fig. 6. Similarly, PC1 scores affected

the discrimination achieved by root 3 (Table 2). This com-

ponent represented absorbance values in the range of 405–

444 nm and at 707 and 728 nm (Table 3). All of these

wavelengths corresponded to very low absorbance values

at the spectra extremes (Fig. 1). Although unnoticeable to the

naked eye, these subtle differences in absorption were the

ones that achieved the separation of the somewhat over-

lapping FC and ST groups.

The overall contribution of the principal components to

the discriminant model is shown in Table 4. The contribution

followed the order PC3 > PC2 > PC1 and all components

were found to be statistically significant at the P ¼ 0:05

level. This order is in perfect agreement with what was

mentioned above about the role and nature of each discri-

minant function.

The DA was completed with the calculation of the so-

called classification functions. These functions allow the

post hoc classification of the items in the training dataset or

the classification of new items. To classify new samples one

would have to calculate the relevant component scores first

and then enter the results into the classification functions.

The function yielding the highest result would indicate the

group to which the new sample belonged. Five classification

functions were calculated (one for each group) and were of

the form:

C ¼ b0
0 þ

X3

i¼1

b0iPCi

Their coefficients are given in Table 5 and the post hoc

classification of the training dataset by means of these

functions was found to be 100% correct (no misclassifica-

tions occurred).

4. Conclusions

This study showed that excellent discrimination (100%

correct classification of the training dataset) between inks of

different brands could be achieved by examination of the Vis

spectra of ethanolic ink solutions and application of a multi-

variate chemometrics protocol for the study of the analytical

data. A discriminant model was calculated with a Wilks’ l of

8:98 � 10�5 and was found to be statistically significant at

the P ¼ 0:05 level. Problems with data multicollinearity

were effectively dealt with by means of PCA, which was

used for the calculation of three new latent variables (prin-

cipal components) that were used in DA. The average

redundancy of the latent variables in the discriminant model

was 33.6%. The study showed that discrimination of the

samples was based on differences that regarded (a) the shape

of the first spectral band, which was present in all cases, (b)

the intensity of the second band, which appeared only in the

case of two inks and (c) the absorption of inks at the spectra

extremes. The proposed method is similar to chromatogra-

phy, in the sense that it detects the coloring materials in the

sample, but avoids all the time consuming steps that char-

acterize separation techniques. We believe that a more

thorough study of the system could be based on the use

of many more ink samples representative of the blue ball-

point pen ink population. Such an experiment should also

regard the variability between inks of the same brand but of

different batches and should involve either the extraction of

inks from documents (destructive technique) or direct obser-

vation of the radiation reflected by the ink on the document

(non-destructive technique). The calculated models should

also be tested on new samples instead of items from the

training dataset to ensure a better assessment of their useful-

ness. This would help establish an appropriate protocol that

could allow forensic document examiners to draw objective

conclusions regarding the similarity of inks used to write

various sections of a document.

Appendix A. Statistical background

A.1. Cluster analysis

The term cluster analysis is used to describe a number

of different classification algorithms. Generally, these

Table 5

Classification function coefficients

Coefficient Ink group

BI FC PE PI ST

b0
0 �94.3730 �24.9465 �41.5852 �189.4998 �15.4220

b1
0 �3.1026 4.4046 12.4671 �22.5842 5.2652

b2
0 89.6619 �50.2556 �50.4302 52.7334 �40.2094

b3
0 45.1379 21.7563 63.0824 �170.7646 9.7896
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algorithms allow the organization of observed data into

meaningful structures, thus promoting the development of

taxonomies. In its simplest form, CA is based on a joining or

tree clustering algorithm. Its purpose is to join objects into

successively larger clusters (hierarchical tree) using some

measure of similarity between the objects. The most com-

monly employed similarity measure in this technique is the

Euclidian distance between the objects. If the objects have

been measured on m variables, an m-dimensional space

exists in which the Euclidian distance between objects k

and l is given by the formula

Dkl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

j¼1

ðxkj � xljÞ2

vuut

Another form of CA is the K-means algorithm that

addresses a different problem, namely that of which objects

belong to a certain predefined number of clusters. To answer

this question one needs an iterative method according to

which k random clusters are formed initially and then objects

are moved between these clusters so that the within cluster

variance is minimized, while the between cluster variance is

maximized. Although it is more common to employ CA to

classify objects on the basis of their variables, it is possible to

run a K-means algorithm on the variables over the objects,

thus achieving the grouping of variables that carry similar

information about the objects.

A.2. Principal component analysis

Principal component analysis is a technique that belongs

to the broader field of factor analysis. Generally, FA aims at

(a) reducing the number of variables on which the objects of

a dataset were measured and (b) detecting structure in the

relationships between the variables. Principal component

analysis achieves the aims mentioned above by using linear

combinations of the original variables (manifest variables) to

yield new variables called principal components or PCs

(latent variables). The extraction of the PCs is successive

with the first PC explaining most of the variance in the

original data. The second PC can then be extracted to explain

most of the remaining unexplained variance. This procedure

can be repeated m times for m manifest variables until all the

original variance has been explained. By definition, the

extracted components are orthogonal and therefore uncor-

related. By extracting only the first two or three PCs one can

project the objects of a dataset on a plane or in a three-

dimensional space respectively and visualize an otherwise

unperceivable m-dimensional space.

The correlations of the PC scores with the original scores on

the m manifest variables are called component loadings and

form the basis for the qualitative interpretation of the extracted

components. A technique called Varimax rotation is used to

ensure that the loading of a manifest variable is maximized on

one component while it is minimized on all other components.

This results in a much easier interpretation of the PCs. If some

of the original variables are already correlated, they are

expected to load highly on the same component.

Each extracted component is characterized by its eigenva-

lue which roughly corresponds to the number of manifest

variables this component represents. For the decision con-

cerning the number of PCs that should be extracted for a given

dataset two criteria have been extensively used: the Kaiser

criterion and the scree test. According to the Kaiser criterion,

only components with eigenvalues greater than unity should

be extracted, the rationale being that components representing

less than one variable should not be taken into account. On the

other hand, the scree test requires the plotting of eigenvalues

against the number of extracted components and the deter-

mination of the point where the plot levels off. Beyond this

point, no further improvement in variance explanation can be

achieved and more components are not needed.

A.3. Discriminant analysis

Discriminant analysis resembles PCA in the sense that

new latent variables are formed from the original manifest

variables, but the requirement is that maximum separation

of the objects is achieved. The new latent variables which

are also called discriminant functions or canonical roots are

a linear combination of the manifest variables and are

orthogonal.

The discriminatory power of the model calculated this

way is assessed by means of the Wilks’ l statistic, which is

given by the formula

l ¼ detðWÞ
detðTÞ

where det(W) is the determinant of the within-groups var-

iance–covariance matrix and det(T) is the determinant of the

total variance–covariance matrix. The smaller the Wilks’ l
value is, the more effective the model is. Another measure of

the individual contribution of each variable in the discrimi-

nant model is the partial Wilks’ l statistic, which is the ratio

of the Wilks’ l value after adding the respective variable

over the Wilks’ l value before adding the variable. Smaller

values of the partial Wilks’ l statistic denote a higher

contribution of the respective variable.

The effectiveness of the discriminant model can also be

checked by running a post hoc classification of the training

dataset objects. According to this technique, the original

objects are treated as new ones and are classified by means of

the classification functions calculated for the respective

model. A variant of this technique is based on the classifica-

tion of entirely new objects and observation of any mis-

classifications.
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